前言
我最近一直在做基于AI Agent 的个人项目, 因为工作加班较多,设计思考时间不足,这里借着Datawhale的开源学习课程《MetaGPT智能体理论与实战》课程,来完善自己的思路,抛砖引玉,和各位开发者一起学习!
一、介绍
今天是打卡的第一天,先说说主要的学习内容:
- 获取MetaGPT
- 部署到本地环境
- 配置MetaGPT
- 申请ChatGPT API Key
- 基于ChatGPT API构建调用代码
- 运行MetaGPT案例代码进行测试
今天学习的内容较为简单,我会尽量以简洁的语言详细描述清楚这个流程,带着读者一起学习Agent开发;
二、配置MetaGPT运行环境
声明
- python版本为3.9+
- 为了方便学习,这里我使用jupyter notebook进行讲解;
- 所有代码我都会同步提交到Github和Gitee,如果各位读者觉得我写的不错,可以给我一个Star.
1. 查看Python版本
为了确保我们的Python环境正确,首先要检查Python的版本。可以使用以下命令来查看Python版本:
!python3 --version
如果上面的命令不起作用或者报错,可以尝试使用以下命令:
python --version
输出
Python 3.10.13
2. 安装MetaGPT
要安装MetaGPT,我们可以使用pip来获取它。以下是在终端中安装MetaGPT的命令:
pip install metagpt==0.6.6
如果你在国内环境,并且希望加速安装过程,可以使用清华源进行按照:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple metagpt==0.6.6
也可以通过拉取官方仓库进行安装:
git clone https://github.com/geekan/MetaGPT.git
cd /your/path/to/MetaGPT
pip install -e .
这里有个重点,如果你的OpenAI API Key是直连且不限速版本,你只需要安装包即可,
如果你的API Key为免费API且有速率限制,我这里建议你直接clone MetaGPT的GitHub仓库,其可以在config2.yaml中自定义配置代理服务器和Key,我在运行MetaGPT的过程中遇到的最大问题就是API限速导致程序报错;所以一定要注意这一点;
作者因为使用的是中转的API Key,因此选择了方法3:
git clone https://github.com/geekan/MetaGPT.git
cd MetaGPT
pip install -e .
我们在config/config2.yaml中配置自己的api key和 base_url 以及选择的model:
llm:
api_type: "openai" # or azure / ollama / groq etc.
model: "gpt-4-turbo" # or gpt-3.5-turbo
base_url: "https://api.openai.com/v1" # or forward url / other llm url
api_key: "YOUR_API_KEY"
3. 配置MetaGPT
为了配置MetaGPT,你需要调用ChatGPT API服务。你可以在这里查看具体配置方式。如果你没有科学环境,也可以通过去tb buy 一个 中转
的 API Key来实现。我们主要介绍官方申请方法:
中转方案修改的部分我在代码中也已经标出
① 登录自己的账号
②创建API Key
③本地配置环境变量
import os
os.environ["OPENAI_API_KEY"] = "sk-..." # 填入你自己的OpenAI API key
os.environ["OPENAI_API_MODEL"] = "gpt-3.5-turbo" # 选择你要使用的模型,例如:gpt-4, gpt-3.5-turbo
os.environ["OPENAI_API_BASE"] = "https://api.openai-forward.com/v1" # 调整API请求地址,设置访问中转代理服务器,如果是商家购买的,可以联系商家要代理服务器地址,这里并不是固定的
④验证配置是否成功:
from openai import OpenAI
# client = OpenAI(api_key='sk-......') # 官网直连版本
client = OpenAI(base_url="https://xxxx.com", # 这里填写你的中转服务器地址
api_key='sk-......') # 这里填写你的中转apikey
completion = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "你是一个WebGIS开发者,测绘地理和全栈开发精通."},
{"role": "user", "content": "聊聊国内外WebGIS开发与AI结合的场景现在我们可以聊聊国内外WebGIS开发与AI LLM Agent结合的场景吧"}
]
)
print(completion.choices[0].message.content)
运行结果如下:
🎉🎉🎉bingo!!运行成功,我们成功拿到了我们要的方案!
通过以上步骤,我们终于成功配置MetaGPT,并开始使用它进行各种任务了。
三. 使用MetaGPT
接下来,我们通过下面这个案例,我们用以验证环境配置是否成功,并初次体验多智能体框架中的指令 - 动作 - 角色 - 环境 - 团队的抽象概念。在这个示例中,我们创建了一个团队,其中包括产品经理、架构师、项目经理和工程师。然后,我们投资并运行一个项目,最后让团队运行五轮。
import asyncio
from metagpt.roles import (
Architect,
Engineer,
ProductManager,
ProjectManager,
)
from metagpt.team import Team
async def startup(idea: str):
company = Team()
company.hire(
[
ProductManager(),
Architect(),
ProjectManager(),
Engineer(),
]
)
company.invest(investment=3.0)
company.run_project(idea=idea)
await company.run(n_round=5)
await startup(idea="write a cli blackjack game")
这里我copy了其中几轮Agent的回答,可以看到我们的AI团队已经运行起来了;
[CONTENT]
{
"Language": "en_us",
"Programming Language": "Python",
"Original Requirements": "write a cli blackjack game",
"Project Name": "cli_blackjack_game",
"Product Goals": [
"Create an engaging and interactive gameplay experience",
"Ensure smooth and intuitive user interface for seamless gameplay",
"Implement various difficulty levels to cater to different player skills"
],
"User Stories": [
"As a player, I want to be able to start a new game easily",
"As a player, I want to see my current score and progress during the game",
"As a player, I want to have options to hit, stand, or double down during my turn",
"As a player, I want to receive clear instructions on how to play the game",
"As a player, I want to feel the excitement and challenge of a real blackjack game"
],
"Competitive Analysis": [
"Blackjack Game A: Basic interface, lacks interactive features",
"Blackjack Pro: Offers advanced gameplay options and strategy guides",
"Blackjack Master: Provides a realistic casino experience with multiplayer mode"
],
"Competitive Quadrant Chart": "quadrantChart\n title \"Engagement and User Experience\"\n x-axis \"Low Engagement\" --> \"High Engagement\"\n y-axis \"Low User Experience\" --> \"High User Experience\"\n quadrant-1 \"Enhance Features\"\n quadrant-2 \"Improve User Experience\"\n quadrant-3 \"Optimize Engagement\"\n quadrant-4 \"Maximize User Satisfaction\"\n \"Blackjack Game A\": [0.3, 0.4]\n \"Blackjack Pro\": [0.6, 0.7]\n \"Blackjack Master\": [0.8, 0.9]\n \"Our CLI Blackjack Game\": [0.5, 0.6]",
"Requirement Analysis": "",
"Requirement Pool": [
[
"P0",
"Implement basic game logic for blackjack"
],
[
"P1",
"Create a scoring system to track player progress"
],
[
"P2",
"Develop a user-friendly interface for easy navigation"
],
[
"P2",
"Incorporate different difficulty levels for player choice"
],
[
"P1",
"Include clear instructions on how to play the game"
]
],
"UI Design draft": "The UI will include options for hitting, standing, and doubling down. It will display the player's current score and provide clear instructions for gameplay.",
"Anything
2024-05-12 17:36:48.720 | ERROR | metagpt.utils.common:log_it:554 - Finished call to 'metagpt.actions.action_node.ActionNode._aask_v1' after 10.724(s), this was the 1st time calling it. exp: openai.types.completion_usage.CompletionUsage() argument after ** must be a mapping, not NoneType
UNCLEAR": ""
}
[/CONTENT][CONTENT]
{
"Language": "en_us",
"Programming Language": "Python",
"Original Requirements": "write a cli blackjack game",
"Project Name": "cli_blackjack_game",
"Product Goals": [
"Create an engaging CLI experience for users",
"Ensure smooth gameplay and fair card dealing logic",
"Provide an enjoyable and interactive blackjack game"
],
"User Stories": [
"As a player, I want to be able to place bets and receive cards",
"As a player, I want to have options like hit, stand, double down",
"As a player, I want to see my current balance and game outcome"
],
"Competitive Analysis": [
"Blackjack Game A: Basic CLI interface, lacks interactive features",
"cli-blackjack.io: Offers various betting options and clear game instructions",
"blackjack-cli.com: Provides realistic card dealing but lacks betting flexibility"
],
"Competitive Quadrant Chart": "quadrantChart\n title \"Engagement and User Experience\"\n x-axis \"Low Engagement\" --> \"High Engagement\"\n y-axis \"Low User Experience\" --> \"High User Experience\"\n quadrant-1 \"Enhance Features\"\n quadrant-2 \"Improve User Experience\"\n quadrant-3 \"Optimize Engagement\"\n quadrant-4 \"Maintain Quality\"\n \"Blackjack Game A\": [0.3, 0.6]\n \"cli-blackjack.io\": [0.45, 0.23]\n \"blackjack-cli.com\": [0.57, 0.69]\n \"Our CLI Blackjack Game\": [0.5, 0.6]",
"Requirement Analysis": "",
"Requirement Pool": [
[
"P0",
"Implement card dealing and betting system"
],
[
"P1",
"Include game logic for hit, stand, and double down actions"
],
[
"P2",
"Display player balance and game outcomes"
]
],
"UI Design draft": "Simple text-based interface with clear instructions and game status
2024-05-12 17:36:57.136 | ERROR | metagpt.utils.common:log_it:554 - Finished call to 'metagpt.actions.action_node.ActionNode._aask_v1' after 19.140(s), this was the 2nd time calling it. exp: openai.types.completion_usage.CompletionUsage() argument after ** must be a mapping, not NoneType
updates.",
"Anything UNCLEAR": ""
}
[/CONTENT]
通过以上步骤,我们可以开始使用MetaGPT进行各种任务,并看到AI Agent的强大潜力!
四、总结
本文是这个打卡系列的第一篇文章,也是后续学习的基础,通过这篇文章,我们了解了MetaGPT开发的基础环境配置方法,在下一篇文章中,我们将深入理解AI Agent的理论,并通过代码来实现Agent的每个模块需求,希望我的文章对各位读者和开发者有所帮助!期待后续学习!!😀😀😀
参考文献
项目地址
如果觉得我的文章对您有帮助,三连+关注便是对我创作的最大鼓励!或者一个star🌟也可以😂.