决策树基础:定义与工作原理

决策树基础:定义与工作原理

1. 定义

什么是决策树?

决策树是一种监督学习算法,广泛应用于分类和回归问题。它通过一系列规则将数据分割成更小的子集,最终达到预测目标的目的。每个分割点被称为一个“节点”,最终的子集称为“叶子节点”。

决策树的组成部分:

  • 根节点:树的起始点,包含所有数据。
  • 内部节点:每个节点代表一个特征,并且根据特征的某个值将数据分割。
  • 叶子节点:最终的分类结果或回归值。

2. 决策树的工作原理

构建过程

  1. 选择最佳特征:使用某种标准(如信息增益或基尼指数)选择最能区分数据的特征。
  2. 分割数据:根据选定的特征将数据分成两个或多个子集。
  3. 递归分割:对每个子集重复上述过程,直到达到停止条件(如树的深度达到限制或分割后的子集纯度高)。

停止条件

  • 达到最大深度。
  • 每个节点包含的样本数小于某个阈值。
  • 分割后的子集纯度高。

代码示例

以下是一个使用Python和Scikit-Learn库实现决策树分类器的示例:

import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import matplotlib.pyplot as plt

# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target

# 分割数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 初始化决策树分类器
clf = DecisionTreeClassifier()

# 训练模型
clf.fit(X_train, y_train)

# 预测
y_pred = clf.predict(X_test)

# 计算准确度
accuracy = np.mean(y_pred == y_test)
print(f'Accuracy: {accuracy:.2f}')

# 可视化决策树
plt.figure(figsize=(20,10))
tree.plot_tree(clf, filled=True, feature_names=iris.feature_names, class_names=iris.target_names)
plt.show()

解释代码

  1. 加载数据集:使用load_iris函数加载Iris数据集。
  2. 分割数据集:使用train_test_split函数将数据集分割为训练集和测试集。
  3. 初始化决策树分类器:使用DecisionTreeClassifier类。
  4. 训练模型:调用fit方法使用训练集数据训练模型。
  5. 预测:使用predict方法对测试集数据进行预测。
  6. 计算准确度:通过比较预测结果和实际结果计算模型的准确度。
  7. 可视化决策树:使用plot_tree函数绘制决策树图形。

3. 进一步阅读

  • 信息增益:衡量特征对数据集信息的不确定性减少程度。
  • 基尼指数:评估数据集的不纯度。
  • 剪枝:减少过拟合,通过剪去不重要的分支。

决策树是一种直观且易于解释的机器学习算法,适用于许多实际应用场景。通过理解其工作原理和实现过程,可以更好地应用和优化决策树模型。

相关推荐

  1. 决策基础定义工作原理

    2024-07-10 05:18:06       44 阅读
  2. 决策基本原理&sklearn实现

    2024-07-10 05:18:06       50 阅读
  3. 决策算法介绍 - 原理案例实现

    2024-07-10 05:18:06       39 阅读
  4. 决策算法介绍:原理案例实现

    2024-07-10 05:18:06       40 阅读
  5. 决策算法介绍:原理案例实现

    2024-07-10 05:18:06       37 阅读
  6. 决策算法介绍:原理案例实现

    2024-07-10 05:18:06       23 阅读
  7. AI学习指南机器学习篇-决策基本原理

    2024-07-10 05:18:06       29 阅读

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2024-07-10 05:18:06       106 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2024-07-10 05:18:06       116 阅读
  3. 在Django里面运行非项目文件

    2024-07-10 05:18:06       95 阅读
  4. Python语言-面向对象

    2024-07-10 05:18:06       103 阅读

热门阅读

  1. 探索Conda的依赖迷宫:包依赖树的构建与解析

    2024-07-10 05:18:06       35 阅读
  2. SRS流媒体源码解析--service

    2024-07-10 05:18:06       30 阅读
  3. 使用springboot 配置一个websocket客户端

    2024-07-10 05:18:06       37 阅读
  4. entity类用到的注解

    2024-07-10 05:18:06       33 阅读
  5. 云原生存储:使用MinIO与Spring整合

    2024-07-10 05:18:06       48 阅读
  6. 小程序事件处理

    2024-07-10 05:18:06       36 阅读
  7. 微信小程序:图片转icon

    2024-07-10 05:18:06       31 阅读
  8. SQL-DQL

    SQL-DQL

    2024-07-10 05:18:06      35 阅读
  9. hutool ExcelUtil 导出导入excel

    2024-07-10 05:18:06       31 阅读
  10. 模型计算量 MAC/FLOPs 的手动统计方法

    2024-07-10 05:18:06       26 阅读
  11. 构建自定义Tensorflow镜像时用到的链接地址整理

    2024-07-10 05:18:06       36 阅读
  12. 凸包——G - Highest Ratio

    2024-07-10 05:18:06       29 阅读
  13. 力扣第226题“翻转二叉树”

    2024-07-10 05:18:06       35 阅读
  14. QUdpSocket 的bind函数详解

    2024-07-10 05:18:06       32 阅读