Mediapipe-姿态估计实例

Mediapipe简介

Mediapipe 是由 Google Research 开发的一款开源框架,旨在帮助开发者轻松地构建、测试和部署复杂的多模态、多任务的机器学习模型。它特别擅长于实时处理和分析音频、视频等多媒体数据。以下是 Mediapipe 的一些关键特点和组件:

关键特点

  1. 多平台支持:Mediapipe 支持在多个平台上运行,包括桌面、移动设备和网页。这使得开发者可以轻松地将模型部署到不同的平台上。

  2. 高效的实时处理:Mediapipe 具有高度优化的性能,能够在资源受限的设备上进行实时处理。这使其特别适合于移动设备和嵌入式系统。

  3. 模块化设计:Mediapipe 使用图表(graph)来组织和连接不同的处理模块。这种设计使得开发者可以灵活地组合和复用不同的处理组件。

  4. 丰富的预构建解决方案:Mediapipe 提供了许多预构建的解决方案,如人脸检测、手部追踪、姿态估计等,开发者可以直接使用这些解决方案来快速构建应用。

主要组件

  1. 图表(Graph):Mediapipe 的核心是其图表结构,图表定义了数据流和处理模块的连接方式。每个图表由一系列节点(nodes)和边(edges)组成,节点表示具体的处理模块,边表示数据在节点之间的流动。

  2. 节点(Nodes):节点是图表的基本单元,表示具体的处理操作。Mediapipe 提供了许多内置的节点,如数据输入输出节点、图像处理节点、机器学习推理节点等。

  3. 数据包(Packets):数据包是图表中传输的数据单元,节点之间通过发送和接收数据包来通信。数据包可以包含各种类型的数据,如图像帧、音频信号、检测结果等。

  4. 计算机视觉解决方案:Mediapipe 提供了许多预构建的计算机视觉解决方案,这些解决方案已经高度优化,能够在实时应用中使用。常见的解决方案包括人脸检测、手部追踪、姿态估计、对象检测等。

常见使用场景

  1. 姿态估计(Pose Estimation):Mediapipe 可以实时检测和追踪人体的关键点(如肩膀、肘部、膝盖等),并估计人体的姿态。这对于体育训练、动作捕捉、增强现实等应用非常有用。

  2. 手部追踪(Hand Tracking):Mediapipe 能够检测和追踪手部的关键点,提供手势识别和手部动作分析的能力。这在手势控制、虚拟现实、手写输入等应用中有广泛的应用。

  3. 人脸检测(Face Detection):Mediapipe 提供了高效的人脸检测和关键点追踪功能,可以用于面部识别、表情分析、虚拟化妆等场景。

  4. 对象检测(Object Detection):Mediapipe 还提供了实时的对象检测解决方案,可以用于监控、无人驾驶、智能家居等领域。

示例代码

以下是一个使用 Mediapipe 进行姿态估计的简单示例:

import cv2
import mediapipe as mp

# Initialize mediapipe pose class.
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()

# Initialize mediapipe drawing class, useful for annotation.
mp_drawing = mp.solutions.drawing_utils

# Load the video file or start webcam capture.
cap = cv2.VideoCapture(0)  # Use 0 for webcam, or provide video file path

while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        break

    # Convert the BGR image to RGB.
    image_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

    # Process the image and detect the pose.
    result = pose.process(image_rgb)

    # Draw the pose annotation on the image.
    if result.pose_landmarks:
        mp_drawing.draw_landmarks(frame, result.pose_landmarks, mp_pose.POSE_CONNECTIONS)

    # Display the frame with pose landmarks.
    cv2.imshow('Pose Estimation', frame)

    # Break the loop if 'q' is pressed.
    if cv2.waitKey(10) & 0xFF == ord('q'):
        break

# Release the video capture object and close display window.
cap.release()
cv2.destroyAllWindows()

这段代码使用 Mediapipe 的姿态估计功能,读取视频流并实时绘制人体的关键点。你可以使用摄像头实时捕捉人体姿态,也可以处理预录制的视频文件。

实例1-读取视频流并进行骨骼点绘制:

import cv2
import mediapipe as mp

# Initialize mediapipe pose class.
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()

# Initialize mediapipe drawing class, useful for annotation.
mp_drawing = mp.solutions.drawing_utils

# Load the video file.
cap = cv2.VideoCapture('D:/basketball.mp4')

# Check if the video is opened successfully.
if not cap.isOpened():
    print("Error: Could not open video.")
    exit()

while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        print("Reached the end of the video.")
        break

    # Convert the BGR image to RGB.
    image_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

    # Process the image and detect the pose.
    result = pose.process(image_rgb)

    # Draw the pose annotation on the image.
    if result.pose_landmarks:
        mp_drawing.draw_landmarks(frame, result.pose_landmarks, mp_pose.POSE_CONNECTIONS)

    # Display the frame with pose landmarks.
    cv2.imshow('Pose Estimation', frame)

    # Break the loop if 'q' is pressed.
    if cv2.waitKey(10) & 0xFF == ord('q'):
        break

# Release the video capture object and close display window.
cap.release()
cv2.destroyAllWindows()

效果如下:
在这里插入图片描述

实例2-读取视频流中姿态估计与3D绘制:

代码如下:

import cv2
import mediapipe as mp
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from matplotlib.animation import FuncAnimation

# Initialize mediapipe pose class.
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()

# Initialize mediapipe drawing class, useful for annotation.
mp_drawing = mp.solutions.drawing_utils

# Load the video file.
cap = cv2.VideoCapture('D:/basketball.mp4')

# Check if the video is opened successfully.
if not cap.isOpened():
    print("Error: Could not open video.")
    exit()

fig = plt.figure(figsize=(10, 5))
ax2d = fig.add_subplot(121)
ax3d = fig.add_subplot(122, projection='3d')

def update(frame_number):
    ret, frame = cap.read()
    if not ret:
        print("Reached the end of the video.")
        return

    # Convert the BGR image to RGB.
    image_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

    # Process the image and detect the pose.
    result = pose.process(image_rgb)

    # Clear the previous plots
    ax2d.clear()
    ax3d.clear()

    # Draw the pose annotation on the image.
    if result.pose_landmarks:
        mp_drawing.draw_landmarks(frame, result.pose_landmarks, mp_pose.POSE_CONNECTIONS)

        # Extract the landmark points.
        landmarks = result.pose_landmarks.landmark
        xs = [landmark.x for landmark in landmarks]
        ys = [landmark.y for landmark in landmarks]
        zs = [landmark.z for landmark in landmarks]

        # Plot 2D image
        ax2d.imshow(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        ax2d.set_title('Pose Estimation')
        ax2d.axis('off')

        # Plot 3D landmarks
        ax3d.scatter(xs, ys, zs, c='blue', marker='o')
        ax3d.set_xlim([0, 1])
        ax3d.set_ylim([0, 1])
        ax3d.set_zlim([-1, 1])
        ax3d.set_xlabel('X')
        ax3d.set_ylabel('Y')
        ax3d.set_zlabel('Z')
        ax3d.set_title('3D Pose Landmarks')

ani = FuncAnimation(fig, update, interval=10)

plt.show()

cap.release()
cv2.destroyAllWindows()

效果如下:
在这里插入图片描述
为了将三维骨骼点连接起来,可以使用 mpl_toolkits.mplot3d.art3d.Line3DCollection 来绘制骨骼连接。你需要定义这些连接的点对,并在三维图中使用它们来绘制线条。以下是更新后的代码:

import cv2
import mediapipe as mp
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.art3d import Line3DCollection
import numpy as np
from matplotlib.animation import FuncAnimation

# Initialize mediapipe pose class.
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()

# Initialize mediapipe drawing class, useful for annotation.
mp_drawing = mp.solutions.drawing_utils

# Load the video file.
cap = cv2.VideoCapture('D:/basketball.mp4')

# Check if the video is opened successfully.
if not cap.isOpened():
    print("Error: Could not open video.")
    exit()

fig = plt.figure(figsize=(10, 5))
ax2d = fig.add_subplot(121)
ax3d = fig.add_subplot(122, projection='3d')

def update(frame_number):
    ret, frame = cap.read()
    if not ret:
        print("Reached the end of the video.")
        return

    # Convert the BGR image to RGB.
    image_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

    # Process the image and detect the pose.
    result = pose.process(image_rgb)

    # Clear the previous plots
    ax2d.clear()
    ax3d.clear()

    # Draw the pose annotation on the image.
    if result.pose_landmarks:
        mp_drawing.draw_landmarks(frame, result.pose_landmarks, mp_pose.POSE_CONNECTIONS)

        # Extract the landmark points.
        landmarks = result.pose_landmarks.landmark
        xs = [landmark.x for landmark in landmarks]
        ys = [landmark.y for landmark in landmarks]
        zs = [landmark.z for landmark in landmarks]

        # Define the connections between landmarks
        connections = [
            (0, 1), (1, 2), (2, 3), (3, 7), (0, 4), (4, 5), (5, 6), (6, 8),
            (9, 10), (11, 12), (11, 13), (13, 15), (15, 17), (15, 19), (15, 21),
            (17, 19), (12, 14), (14, 16), (16, 18), (16, 20), (16, 22), (18, 20),
            (11, 23), (12, 24), (23, 24), (23, 25), (24, 26), (25, 27), (26, 28),
            (27, 29), (28, 30), (29, 31), (30, 32)
        ]

        # Create a list of 3D lines
        lines = [[(xs[start], ys[start], zs[start]), (xs[end], ys[end], zs[end])] for start, end in connections]

        # Plot 2D image
        ax2d.imshow(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        ax2d.set_title('Pose Estimation')
        ax2d.axis('off')

        # Plot 3D landmarks and connections
        ax3d.scatter(xs, ys, zs, c='blue', marker='o')
        ax3d.add_collection3d(Line3DCollection(lines, colors='blue', linewidths=2))
        ax3d.set_xlim([0, 1])
        ax3d.set_ylim([0, 1])
        ax3d.set_zlim([-1, 1])
        ax3d.set_xlabel('X')
        ax3d.set_ylabel('Y')
        ax3d.set_zlabel('Z')
        ax3d.set_title('3D Pose Landmarks')

ani = FuncAnimation(fig, update, interval=10)

plt.show()

cap.release()
cv2.destroyAllWindows()

在这个代码中,我们定义了 connections 列表,它包含了骨骼点之间的连接对。然后我们创建了一个 lines 列表,用于存储这些连接的三维线段,并使用 ax3d.add_collection3d(Line3DCollection(lines, colors='blue', linewidths=2)) 方法将这些线段添加到三维图中。

运行这个脚本后,三维图中不仅会显示骨骼点,还会将这些点连起来,形成完整的骨骼结构。
效果如下:
在这里插入图片描述
上面的代码看似三维图的骨骼是倒立的,你可以调整三维图的坐标显示,以使得骨骼结构显示为正常的人体姿态。可以通过设置三维图的坐标轴范围和方向来调整显示效果。以下是修改后的代码,调整了坐标轴的范围和方向,以使骨骼结构正常显示:

import cv2
import mediapipe as mp
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.art3d import Line3DCollection
import numpy as np
from matplotlib.animation import FuncAnimation

# Initialize mediapipe pose class.
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()

# Initialize mediapipe drawing class, useful for annotation.
mp_drawing = mp.solutions.drawing_utils

# Load the video file.
cap = cv2.VideoCapture('D:/basketball.mp4')

# Check if the video is opened successfully.
if not cap.isOpened():
    print("Error: Could not open video.")
    exit()

fig = plt.figure(figsize=(10, 5))
ax2d = fig.add_subplot(121)
ax3d = fig.add_subplot(122, projection='3d')

def update(frame_number):
    ret, frame = cap.read()
    if not ret:
        print("Reached the end of the video.")
        return

    # Convert the BGR image to RGB.
    image_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

    # Process the image and detect the pose.
    result = pose.process(image_rgb)

    # Clear the previous plots
    ax2d.clear()
    ax3d.clear()

    # Draw the pose annotation on the image.
    if result.pose_landmarks:
        mp_drawing.draw_landmarks(frame, result.pose_landmarks, mp_pose.POSE_CONNECTIONS)

        # Extract the landmark points.
        landmarks = result.pose_landmarks.landmark
        xs = [landmark.x for landmark in landmarks]
        ys = [landmark.y for landmark in landmarks]
        zs = [-landmark.z for landmark in landmarks]  # Negate the z-axis for better visualization

        # Define the connections between landmarks
        connections = [
            (0, 1), (1, 2), (2, 3), (3, 7), (0, 4), (4, 5), (5, 6), (6, 8),
            (9, 10), (11, 12), (11, 13), (13, 15), (15, 17), (15, 19), (15, 21),
            (17, 19), (12, 14), (14, 16), (16, 18), (16, 20), (16, 22), (18, 20),
            (11, 23), (12, 24), (23, 24), (23, 25), (24, 26), (25, 27), (26, 28),
            (27, 29), (28, 30), (29, 31), (30, 32)
        ]

        # Create a list of 3D lines
        lines = [[(xs[start], ys[start], zs[start]), (xs[end], ys[end], zs[end])] for start, end in connections]

        # Plot 2D image
        ax2d.imshow(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        ax2d.set_title('Pose Estimation')
        ax2d.axis('off')

        # Plot 3D landmarks and connections
        ax3d.scatter(xs, ys, zs, c='blue', marker='o')
        ax3d.add_collection3d(Line3DCollection(lines, colors='blue', linewidths=2))
        ax3d.set_xlim([0, 1])
        ax3d.set_ylim([1, 0])  # Flip the y-axis for better visualization
        ax3d.set_zlim([1, -1])
        ax3d.set_xlabel('X')
        ax3d.set_ylabel('Y')
        ax3d.set_zlabel('Z')
        ax3d.set_title('3D Pose Landmarks')

ani = FuncAnimation(fig, update, interval=10)

plt.show()

cap.release()
cv2.destroyAllWindows()

在这个代码中:

  1. 通过取反 zs 坐标 (zs = [-landmark.z for landmark in landmarks]),使得骨骼点的 Z 轴方向与预期一致。
  2. 通过设置 ax3d.set_ylim([1, 0]) 来翻转 Y 轴的方向,以便更符合常见的视觉习惯。

运行这个脚本后,三维图中的骨骼结构应会显示为正常的人体姿态。
显示效果如下:
在这里插入图片描述

相关推荐

  1. 视频姿态估计:DeciWatch

    2024-07-11 18:06:01       63 阅读
  2. 姿态估计:DiffPose

    2024-07-11 18:06:01       59 阅读
  3. 人体姿态估计学习

    2024-07-11 18:06:01       29 阅读

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2024-07-11 18:06:01       98 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2024-07-11 18:06:01       106 阅读
  3. 在Django里面运行非项目文件

    2024-07-11 18:06:01       87 阅读
  4. Python语言-面向对象

    2024-07-11 18:06:01       97 阅读

热门阅读

  1. less和sass有啥区别哪个更加好

    2024-07-11 18:06:01       27 阅读
  2. 7.10飞书一面面经

    2024-07-11 18:06:01       27 阅读
  3. mysql bit 对gorm使用何种类型?

    2024-07-11 18:06:01       31 阅读
  4. python爬虫学习(三十三天)---多线程上篇

    2024-07-11 18:06:01       27 阅读
  5. 一、Python 日志系统设计之不同级别的系统日志

    2024-07-11 18:06:01       26 阅读
  6. SpringAMQP收发消息demo

    2024-07-11 18:06:01       23 阅读