day5 分布式节点

本文代码地址:

本文是7天用Go从零实现分布式缓存GeeCache的第五篇。

  • 注册节点(Register Peers),借助一致性哈希算法选择节点。
  • 实现 HTTP 客户端,与远程节点的服务端通信,代码约90

1 流程回顾

在这里插入图片描述

我们在GeeCache 第二天中描述了 geecache 的流程。在这之前已经实现了流程,今天实现流程,从远程节点获取缓存值。

我们进一步细化流程

在这里插入图片描述

2 抽象 PeerPicker

day5-multi-nodes/geecache/peers.go

package geecache

// PeerPicker is the interface that must be implemented to locate
// the peer that owns a specific key.
type PeerPicker interface {
	PickPeer(key string) (peer PeerGetter, ok bool)
}

// PeerGetter is the interface that must be implemented by a peer.
type PeerGetter interface {
	Get(group string, key string) ([]byte, error)
}
  • 在这里,抽象出 2 个接口,PeerPicker PickPeer() 方法用于根据传入的 key 选择相应节点 PeerGetter
  • 接口 PeerGetterGet() 方法用于从对应 group 查找缓存值。PeerGetter 就对应于上述流程中的 HTTP 客户端。

3 节点选择与 HTTP 客户端

GeeCache 第三天 中我们为 HTTPPool 实现了服务端功能,通信不仅需要服务端还需要客户端,因此,我们接下来要为 HTTPPool 实现客户端的功能。

首先创建具体的HTTP客户端类 httpGetter,实现 PeerGetter 接口。

day5-multi-nodes/geecache/http.go

type httpGetter struct {
	baseURL string
}

func (h *httpGetter) Get(group string, key string) ([]byte, error) {
	u := fmt.Sprintf(
		"%v%v/%v",
		h.baseURL,
		url.QueryEscape(group),
		url.QueryEscape(key),
	)
	res, err := http.Get(u)
	if err != nil {
		return nil, err
	}
	defer res.Body.Close()

	if res.StatusCode != http.StatusOK {
		return nil, fmt.Errorf("server returned: %v", res.Status)
	}

	bytes, err := ioutil.ReadAll(res.Body)
	if err != nil {
		return nil, fmt.Errorf("reading response body: %v", err)
	}

	return bytes, nil
}

var _ PeerGetter = (*httpGetter)(nil)
  • baseURL 表示将要访问的远程节点的地址,例如 http://example.com/_geecache/
  • 使用http.Get()方式获取返回值,并转换为[]bytes类型。

第二步,为 HTTPPool 添加节点选择的功能。

const (
	defaultBasePath = "/_geecache/"
	defaultReplicas = 50
)
// HTTPPool implements PeerPicker for a pool of HTTP peers.
type HTTPPool struct {
	// this peer's base URL, e.g. "https://example.net:8000"
	self        string
	basePath    string
	mu          sync.Mutex // guards peers and httpGetters
	peers       *consistenthash.Map
	httpGetters map[string]*httpGetter // keyed by e.g. "http://10.0.0.2:8008"
}
  • 新增成员变量 peers,类型是一致性哈希算法的 Map,用来根据具体的 key 选择节点。
  • 新增成员变量 httpGetters,映射远程节点与对应的 httpGetter。每一个远程节点对应一个 httpGetter,因为 httpGetter 与远程节点的地址 baseURL 有关。

第三步,实现 PeerPicker 接口。

// Set updates the pool's list of peers.
func (p *HTTPPool) Set(peers ...string) {
	p.mu.Lock()
	defer p.mu.Unlock()
	p.peers = consistenthash.New(defaultReplicas, nil)
	p.peers.Add(peers...)
	p.httpGetters = make(map[string]*httpGetter, len(peers))
	for _, peer := range peers {
		p.httpGetters[peer] = &httpGetter{baseURL: peer + p.basePath}
	}
}

// PickPeer picks a peer according to key
func (p *HTTPPool) PickPeer(key string) (PeerGetter, bool) {
	p.mu.Lock()
	defer p.mu.Unlock()
	if peer := p.peers.Get(key); peer != "" && peer != p.self {
		p.Log("Pick peer %s", peer)
		return p.httpGetters[peer], true
	}
	return nil, false
}

var _ PeerPicker = (*HTTPPool)(nil)
  • Set() 方法实例化了一致性哈希算法,并且添加了传入的节点。
  • 并为每一个节点创建了一个 HTTP 客户端 httpGetter
  • PickerPeer() 包装了一致性哈希算法的 Get() 方法,根据具体的 key,选择节点,返回节点对应的 HTTP 客户端。

至此,HTTPPool 既具备了提供 HTTP 服务的能力,也具备了根据具体的 key,创建 HTTP 客户端从远程节点获取缓存值的能力。

4 实现主流程

最后,我们需要将上述新增的功能集成在主流程(geecache.go)中。

day5-multi-nodes/geecache/geecache.go

// A Group is a cache namespace and associated data loaded spread over
type Group struct {
	name      string
	getter    Getter
	mainCache cache
	peers     PeerPicker
}

// RegisterPeers registers a PeerPicker for choosing remote peer
func (g *Group) RegisterPeers(peers PeerPicker) {
	if g.peers != nil {
		panic("RegisterPeerPicker called more than once")
	}
	g.peers = peers
}

func (g *Group) load(key string) (value ByteView, err error) {
	if g.peers != nil {
		if peer, ok := g.peers.PickPeer(key); ok {
			if value, err = g.getFromPeer(peer, key); err == nil {
				return value, nil
			}
			log.Println("[GeeCache] Failed to get from peer", err)
		}
	}

	return g.getLocally(key)
}

func (g *Group) getFromPeer(peer PeerGetter, key string) (ByteView, error) {
	bytes, err := peer.Get(g.name, key)
	if err != nil {
		return ByteView{}, err
	}
	return ByteView{b: bytes}, nil
}
  • 新增 RegisterPeers() 方法,将 实现了 PeerPicker 接口的 HTTPPool 注入到 Group 中。
  • 新增 getFromPeer() 方法,使用实现了 PeerGetter 接口的 httpGetter 从访问远程节点,获取缓存值。
  • 修改 load 方法,使用 PickPeer() 方法选择节点,若非本机节点,则调用 getFromPeer() 从远程获取。若是本机节点或从远程节点获取失败,则回退到 getLocally()

5 main 函数测试。

day5-multi-nodes/main.go

var db = map[string]string{
	"Tom":  "630",
	"Jack": "589",
	"Sam":  "567",
}

func createGroup() *geecache.Group {
	return geecache.NewGroup("scores", 2<<10, geecache.GetterFunc(
		func(key string) ([]byte, error) {
			log.Println("[SlowDB] search key", key)
			if v, ok := db[key]; ok {
				return []byte(v), nil
			}
			return nil, fmt.Errorf("%s not exist", key)
		}))
}

func startCacheServer(addr string, addrs []string, gee *geecache.Group) {
	peers := geecache.NewHTTPPool(addr)
	peers.Set(addrs...)
	gee.RegisterPeers(peers)
	log.Println("geecache is running at", addr)
	log.Fatal(http.ListenAndServe(addr[7:], peers))
}

func startAPIServer(apiAddr string, gee *geecache.Group) {
	http.Handle("/api", http.HandlerFunc(
		func(w http.ResponseWriter, r *http.Request) {
			key := r.URL.Query().Get("key")
			view, err := gee.Get(key)
			if err != nil {
				http.Error(w, err.Error(), http.StatusInternalServerError)
				return
			}
			w.Header().Set("Content-Type", "application/octet-stream")
			w.Write(view.ByteSlice())

		}))
	log.Println("fontend server is running at", apiAddr)
	log.Fatal(http.ListenAndServe(apiAddr[7:], nil))

}

func main() {
	var port int
	var api bool
	flag.IntVar(&port, "port", 8001, "Geecache server port")
	flag.BoolVar(&api, "api", false, "Start a api server?")
	flag.Parse()

	apiAddr := "http://localhost:9999"
	addrMap := map[int]string{
		8001: "http://localhost:8001",
		8002: "http://localhost:8002",
		8003: "http://localhost:8003",
	}

	var addrs []string
	for _, v := range addrMap {
		addrs = append(addrs, v)
	}

	gee := createGroup()
	if api {
		go startAPIServer(apiAddr, gee)
	}
	startCacheServer(addrMap[port], []string(addrs), gee)
}

main 函数的代码比较多,但是逻辑是非常简单的。

  • startCacheServer() 用来启动缓存服务器:创建 HTTPPool,添加节点信息,注册到 gee 中,启动 HTTP 服务(共3个端口,8001/8002/8003),用户不感知。
  • startAPIServer() 用来启动一个 API 服务(端口 9999),与用户进行交互,用户感知。
  • main() 函数需要命令行传入 portapi 2 个参数,用来在指定端口启动 HTTP 服务。

为了方便,我们将启动的命令封装为一个 shell 脚本:

#!/bin/bash
trap "rm server;kill 0" EXIT

go build -o server
./server -port=8001 &
./server -port=8002 &
./server -port=8003 -api=1 &

sleep 2
echo ">>> start test"
curl "http://localhost:9999/api?key=Tom" &
curl "http://localhost:9999/api?key=Tom" &
curl "http://localhost:9999/api?key=Tom" &

wait

trap 命令用于在 shell 脚本退出时,删掉临时文件,结束子进程。

$ ./run.sh
2020/02/16 21:17:43 geecache is running at http://localhost:8001
2020/02/16 21:17:43 geecache is running at http://localhost:8002
2020/02/16 21:17:43 geecache is running at http://localhost:8003
2020/02/16 21:17:43 fontend server is running at http://localhost:9999
>>> start test
2020/02/16 21:17:45 [Server http://localhost:8003] Pick peer http://localhost:8001
2020/02/16 21:17:45 [Server http://localhost:8003] Pick peer http://localhost:8001
2020/02/16 21:17:45 [Server http://localhost:8003] Pick peer http://localhost:8001
...
630630630

此时,我们可以打开一个新的 shell,进行测试:

$ curl "http://localhost:9999/api?key=Tom"
630
$ curl "http://localhost:9999/api?key=kkk"
kkk not exist

测试的时候,我们并发了 3 个请求 ?key=Tom,从日志中可以看到,三次均选择了节点 8001,这是一致性哈希算法的功劳。但是有一个问题在于,同时向 8001 发起了 3 次请求。试想,假如有 10 万个在并发请求该数据呢?那就会向 8001 同时发起 10 万次请求,如果 8001 又同时向数据库发起 10 万次查询请求,很容易导致缓存被击穿。

三次请求的结果是一致的,对于相同的 key,能不能只向 8001 发起一次请求?这个问题下一次解决。

6 QA

  1. 这里有一个疑惑想问一下博主,如果要将GeeCache进行横向扩展的话,应该如何部署,可不可以将peer部署到其他机器上?
    答:把 IP 和端口换成部署机器的 IP 和端口就可以了。只是测试用例中,在本机启动了三个实例,基于网络通信,部署在哪里都可以。

A :是不是漏掉了从远程节点拿到缓存后更新本地缓存这一步?
B : groupcache 中缓存值只淘汰不更新,也没有超时淘汰机制,这样取舍简化了设计。
A : 我的意思是当请求当前缓存服务器时 此服务器本地没有缓存 接着由当前服务器去请求其他节点服务器 当拿回来缓存值后 不应该更新此服务器的本地缓存吗 ?
B :分布式缓存的目的是不同key缓存在不同的节点上,增加总的吞吐量。如果大家转发请求后,都再备份一次,每台机器上都缓存了相同的数据,就失去意义了。每个节点缓存1G数据,理论上10个节点总共可以缓存10G不同的数据。当然对于热点数据,每个节点拿到值后,本机备份一次是有价值的,增加热点数据的吞吐量。groupcache 的原生实现中,有1/10的概率会在本机存一次。这样10个节点,理论上可以缓存9G不同的数据,算是一种取舍。

  1. 如何才能缓存多个group?是通过go 开辟新goroutine吗?或者是给多个group注册相同的HTTPPool?
    答:都可以,group 和 HTTPPool 是解耦的,可以复用,也可以各自搭配各自的。

  2. 当前版本应该是不支持动态的横向扩展,现在需要把一致性hash中的物理节点提前写在配置中,或者map中,如果我想要新增一个节点怎么办呢,需要重新启动,然后利用peers.Set(addrs…)把新增后的所有节点加进来吗
    答:当前版本只能这样。后续可以将缓存服务注册到注册中心,通过服务发现获取所有节点IP。可以参看带注册中心的版本:https://github.com/peanutzhen/peanutcache

  3. 用户只知晓API:9999.那么API与分布式缓存是一个1对3的关系. 那么当用户查询的时候,首先查询的get是三个缓存中的哪一个呢? 还是说API本身是一个group 本地有, 没有再去三个缓存中找呢? 这个模型实在是没搞清晰 希望指点
    答: api服务绑定了一个本地的geecache服务,这个服务miss的时候,API用consistent hasher 去算出应该去哪个节点找数据。

  4. 获取缓存数据的流程是:从本地缓存查找->从远程节点查找->回调函数,写到本地。如果是这样的话,远程节点是不是就一直没有缓存到数据。数据要么是本地缓存直接得到,要么是本地和远程都找不到,然后回调,写到本地缓存。不知道我理解的正确吗?
    答:不对。远程节点查找的时候,如果在远程节点的缓存中找不到,是调用远程节点的回调函数,存储到远程节点

原文地址: https://geektutu.com/post/geecache-day5.html

相关推荐

  1. <span style='color:red;'>Day</span><span style='color:red;'>5</span>-

    Day5-

    2024-07-21 01:32:02      32 阅读
  2. Redis-5 分布式

    2024-07-21 01:32:02       35 阅读
  3. day4 节点两两交换

    2024-07-21 01:32:02       50 阅读
  4. 分布式搜索引擎Elasticsearch中各种类型节点的作用

    2024-07-21 01:32:02       44 阅读

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2024-07-21 01:32:02       142 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2024-07-21 01:32:02       156 阅读
  3. 在Django里面运行非项目文件

    2024-07-21 01:32:02       131 阅读
  4. Python语言-面向对象

    2024-07-21 01:32:02       141 阅读

热门阅读

  1. 量化机器人如何实现无缝交易?

    2024-07-21 01:32:02       28 阅读
  2. Redis 深度历险:核心原理与应用实践 - 读书笔记

    2024-07-21 01:32:02       25 阅读
  3. Head size 160 is not supported by PagedAttention.

    2024-07-21 01:32:02       26 阅读
  4. 数据仓库中的数据治理

    2024-07-21 01:32:02       28 阅读
  5. Piping(√)

    2024-07-21 01:32:02       25 阅读
  6. KTV点歌系统有什么作用?

    2024-07-21 01:32:02       26 阅读