基于深度学习的停车场车辆检测算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

上图测试结果如下图所示:

2.算法运行软件版本

matlab2022a

3.部分核心程序

image = imread('image_test\test.jpg');
image2= image;


%图片划分大小
R     = 10;
C     = 21;
[W,H,k] = size(image);

MASK    = zeros(W,H);
for i = 1:floor(W/R)
    [i,floor(W/R)]
    for j = 1:floor(H/C)
        tmps = imresize(image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,:),[224,224]);
        [Predicted_Label, Probability] = classify(net, tmps); 
     
        if double(Predicted_Label)==2
           image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,1)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,1)+60;
           image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,2)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,2);
           image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,3)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,3);
        else
           image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,1)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,1);
           image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,2)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,2)+60;
           image2(R*(i-1)+1:R*i,C*(j-1)+1:C*j,3)=image(R*(i-1)+1:R*i,C*(j-1)+1:C*j,3);
        end
    end
end

figure;
imshow(image);
figure;
imshow(image2);
122

4.算法理论概述

      随着城市交通管理和智慧停车系统的快速发展,停车场车辆检测已成为实现高效车位管理、智能计费的关键技术之一。深度学习,尤其是基于卷积神经网络(CNN)的目标检测技术,以其卓越的特征提取和模式识别能力,为停车场车辆检测提供了强大工具。

      GoogLeNet是一种创新的深度卷积神经网络,其核心是Inception模块。Inception模块通过多尺度并行卷积路径提取多维度特征,有效地提升了网络的表达能力和计算效率。GoogLeNet网络由一系列Inception模块堆叠而成,辅以辅助分类器和全局平均池化层,最终用于分类任务。针对停车场车辆检测任务,我们将其改造为基于滑动窗口的两阶段检测框架,即首先利用GoogLeNet提取图像特征,然后通过后处理步骤(如滑窗检测、非极大值抑制等)生成车辆检测结果。

      在停车场车辆检测任务中,GoogLeNet模型作为特征提取器,其损失函数主要体现在分类器部分。我们采用二分类交叉熵损失(Binary Cross-Entropy Loss, BCE Loss)衡量分类器预测车辆存在与否的准确性:

       模型训练时,首先在大规模通用图像数据集上预训练GoogLeNet,然后在停车场车辆检测数据集上进行微调,优化网络权重以适应车辆检测任务。

针对停车场车辆检测任务,需对GoogLeNet进行以下适应性调整:

  1. 数据集准备:收集大量包含停车场场景的图像,标注其内车辆的精确边界框。数据增强策略如翻转、旋转、缩放、光照变换等有助于提高模型泛化能力。

  2. 滑窗参数设定:依据停车场车辆的实际尺寸分布,合理设置滑动窗口的尺度和比例,确保覆盖各类车辆。

  3. 性能评估:使用平均精度(Average Precision, AP)等指标评价模型在停车场车辆检测上的性能。AP综合考虑了召回率和精确率,能全面反映模型在不同IoU阈值下的表现。

5.算法完整程序工程

OOOOO

OOO

O

最近更新

  1. docker php8.1+nginx base 镜像 dockerfile 配置

    2024-04-03 06:38:03       98 阅读
  2. Could not load dynamic library ‘cudart64_100.dll‘

    2024-04-03 06:38:03       106 阅读
  3. 在Django里面运行非项目文件

    2024-04-03 06:38:03       87 阅读
  4. Python语言-面向对象

    2024-04-03 06:38:03       97 阅读

热门阅读

  1. 【观察者模式】

    2024-04-03 06:38:03       39 阅读
  2. 时空序列预测模型—PredRNN(Pytorch)

    2024-04-03 06:38:03       32 阅读
  3. STM32 中断应用概览

    2024-04-03 06:38:03       34 阅读
  4. el-table\vxe-table深色背景Css样式

    2024-04-03 06:38:03       37 阅读
  5. 回溯大学生活

    2024-04-03 06:38:03       34 阅读
  6. FPGA简介

    2024-04-03 06:38:03       39 阅读
  7. 2、趁热打铁,Docker实战

    2024-04-03 06:38:03       42 阅读